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THE CREW ACTIVITY TRACKING SYSTEM:
 LEVERAGING FLIGHT DATA FOR AIDING, TRAINING AND ANALYSIS

Todd J. Callantine, San Jose State University/NASA Ames Research Center, Moffett Field, CA

Introduction
Aviation safety is currently receiving

unprecedented attention. Spurred by projected
growth in air traffic, practitioners and researchers
alike are seeking ways to ensure that aviation
systems continue to operate safely. Studies
implicate human error as the primary cause in 70%
of hull-loss accidents worldwide [1]; more flights
create more opportunities for disaster. New
operational concepts designed to meet increased
demand necessarily place greater reliance on
automation to improve efficiency (e.g., [2]).
However, in addition to requiring changes in
operator roles and responsibilities that require
careful scrutiny, automation can increase cognitive
workload and foster errors that can lead to unsafe
operations (e.g., [3-5]).

To better understand human error and its
context while addressing safety challenges due to
increasing traffic density, the aviation research
community needs data. Much has been learned from
pilot narratives submitted to the U.S. National
Aeronautics and Space Administration (NASA)-
administered Aviation Safety Reporting System
(ASRS) (e.g., [6]). However, detailed error data are
rare; test subjects in high fidelity simulations may
not commit consequential errors (e.g., [7, 8]).
Unfortunately, catastrophes therefore remain an
important source of information about errors.
Airlines are also seeking ways to address safety
concerns, including errors. The U.S. Federal
Aviation Administration (FAA) Advanced
Qualification Program (AQP) seeks to qualify,
train, and certify flight crew members and
operational personnel to a high level of proficiency
[9]. As with research efforts, AQP could benefit
from data about real errors.

Technological advances have made flight data
a viable real-world data source for studies of human
error and error prevention; hundreds of parameters
are currently available for analysis. These data have
enabled airlines to institute increasingly advanced
Flight Operational Quality Assurance (FOQA)
programs, which analyze flight data from line
operations to detect “operational irregularities that
can foreshadow accidents and incidents [10, p 22],”
and proactively disseminate this information to
flight crews and maintenance personnel. Central to
FOQA are systems for analyzing operational flight
data and maintaining databases of trends. Many
commercially available Ground Data Replay and
Analysis Systems (GDRASs) now include three-
dimensional animations and other sophisticated
tools [11]. Efforts to further enhance and
standardize event detection and other analysis
capabilities are ongoing in the FAA’s Aviation
Performance Measuring System (APMS) program
[10, 12, 13].

This paper presents an intent inference
technology, referred to as activity tracking, that in
the future could also support flight-data-driven
safety-enhancement efforts. A methodology for
activity tracking has been implemented and
validated in the Crew Activity Tracking System
(CATS) [14, 15]. As implemented for the flight
deck, CATS uses knowledge about the pilot’s task
and the current operational context to predict
nominal activities and interpret actual pilot actions.
By analyzing pilot action data in conjunction with
clearance constraints and other flight data
parameters, CATS can help disambiguate errors
from other causes of abnormal flight conditions,
and characterize error-inducing contexts in
operational terms.

Furthermore, because CATS interprets actual
pilot actions vis a vis a model of nominally correct
operations, CATS can track when pilots deviate
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from ‘preferred’ procedures represented in the
model. Such deviations may not lead to operational
irregularities per se, but they may offer insights
about how pilots understand the operation of their
aircraft and, perhaps, how airlines might realize
benefits from modifications to current error-
inducing aircraft systems and interfaces. In
addition, aviation research may at times hinge upon
small issues that activity tracking could potentially
elucidate.

CATS’ output was originally designed to
directly support training and real-time aiding
applications [14]; as part of a computer-based
training system, for example, CATS can detect
errors and suggest the nominal correct action to the
student. As the student improves, the training
system can evolve into an aid [16], scaffolding skill
development. Using CATS as part of FOQA-
supported AQP, managers could ‘automatically’
introduce the precise context in which errors
identified by CATS occurred, into a training
curriculum. Increasing the efficiency and fidelity of
information transfer to pilots in this way can
potentially yield safety benefits.

The paper first reviews the current state-of-the-
art in FOQA data collection and analysis. It then
discusses activity tracking, and introduces CATS.
After describing CATS’ knowledge representations
and activity tracking method, the paper describes
using CATS for analysis of flight data, and for
training/aiding. The paper concludes with a
discussion of issues surrounding activity tracking
with flight data and current research efforts to
demonstrate CATS using flight data from the
NASA Langley Boeing 757 (B757) Airborne
Research Integrated Experiment System (ARIES)
aircraft within the FAA/NASA Aviation Safety
Program.

FOQA Programs
Airlines institute FOQA programs to improve

safety by exploiting the wealth of flight data they
create during line operations. The idea has been
evolving since Flight Data Recorder (FDRs)
became mandatory equipment on aircraft; aircraft
manufacturers currently deliver aircraft equipped
with FOQA flight data collection equipment. The
objective of a FOQA program is detect—“early
enough”—“technical flaws, unsafe practices or

conditions outside of desired operating procedures
[so-called deviations, or ‘exceedances’] to allow
intervention to avert accidents or incidents [10, p.
3].”

Airlines outside the U.S. have been pursuing
FOQA-type programs for over three decades. Since
1995, the FAA has been promoting the voluntary
implementation of FOQA by U.S. Airlines.
Estimates place safety- and maintenance-related
benefits at over a million dollars annually for large
fleet sizes, excluding costs that would be incurred
due to the stigma that would likely result from a
serious incident or accident. To date, nine major
U.S. carriers have implemented FOQA, to the
extent that aircraft in their fleets are equipped with
Quick Access Recorders (QARs) to allow efficient
transfer of flight data to GDRASs [10].

Successful FOQA depends on the effectiveness
with which deviations can be detected and
communicated to flight crews and other operational
personnel. GDRASs therefore play a crucial role. In
addition to data integrity filters, configurable event
specifications, parameter graphs, and instrument
visualizations, newer GDRASs incorporate
databases of navigation information, including
charts with current position overlays, three-
dimensional scenes, and database query
functionality. Some also include synchronized
digital video/audio and VCR-like controls, so that
training simulation data may be analyzed in detail
using the same tool. This allows direct comparison
of deviations observed during training with those
detected from operational flight data.

The FAA’s Aviation Performance Measuring
System (APMS) represents an attempt to further
enhance GDRAS capabilities by enabling
examination of not just deviations, but all flight
data. APMS seeks to objectively and continuously
evaluate a flight crew’s technical performance, and
automatically convert these data into useful safety
information via data mining and other knowledge-
based techniques [10, 12, 13]; however, technical
information on APMS is scant. Standardizing event
detection capabilities could offer benefits as it could
enable FOQA information to be shared among
airlines.

Current FOQA programs differ across airlines.
Differences include the number and types of flight
data parameters collected, the types of deviations
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the data are inspected for, and the manner which
trend information is cataloged and used. Tables 1
and 2 provide a flavor for the range of parameters
and categories of deviations used in basic FOQA
programs, and suggested for “state-of-the-art”
programs. Table 1 lists some flight data parameters
deemed useful for FOQA in the descent/approach
phase of flight [17] (see [17] for complete lists for
all flight phases). For advanced FOQA, Table 1
reflects an increased emphasis on the aircraft’s
automated systems, in keeping with the increasing
recognition of automation’s error-inducing
potential. Information about the Flight Management
Computer (FMC)—including the appearance of
each pilot’s Control and Display Unit (CDU)—is
especially useful, as Flight Management Systems
(FMSs) play an ever-larger role in flight operations.

Table 2 lists an assorted sample of event
(deviation) categories that FOQA programs search
for in descent/approach data (again, see [17] for a
comprehensive list). Table 2 reveals an expansion
of deviation categories to include safety-critical

systems, such as the Ground Proximity Warning
System (GPWS). Although Table 1 suggests
collecting FMC/CDU data, exactly how these data
will be used is apparently unclear, as the expanded
set of deviation categories in Table 2 does not
include any categories that directly relate to these
data.

As implemented by a major European carrier
[18], FOQA is viewed as an objective data source
that complements several other subjective data
sources (e.g., pilot reports). But FOQA cannot
detect some types of deviations (e.g., runway
incursions), and alone cannot attribute cause to a
deviation. All data sources together do not achieve
100% risk coverage. However, FOQA has proven
effective in detecting and remediating several

Table 1. Sample Descent/Approach Parameters
(from [17])

Used in Current
Programs

Additionally
Suggested for State-
of-the-Art Programs

Altitude Autopilot Flight Control
System mode annunciation

Barometric altitude Autopilot engage status

Computed airspeed Autothrottle engage status

Flap position EFIS format/display

Gear in transit EICAS format/display

Mach speed FMC winds

Normal acceleration FMC display (both pilots)

Pitch attitude Microphone keying

Relative time NAV receiver frequency

Roll attitude Pilot event marker

Vertical speed TCAS event

Table 2. Sample Descent/Approach Event
Categories (from [17])

Used in Current
Programs

Additionally
Suggested for State-
of-the-Art Programs

Approach speed High/Low Abnormal flight control
position

Approach thrust Auto-brake status

Bank angle limit Go around

Flap placard speed Ground Proximity Warning
System

Glideslope deviation
High/Low

Ground spoiler not armed

Gross power increase on
final

Lateral acceleration

High descent rate Pilot event marker

Localizer deviation Reduced lift margin

Low power on final Speed below 10,000 ft

Reversers deployed in
flight

Stall avoidance

Speed deviation at
threshold

Stick shaker

Speedbrake arm delay TCAS

Wind shear below 1500 ft. Vertical acceleration
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classes of deviations, including long landings, non-
stabilized approaches, asymmetrical thrust settings
at takeoff, and pilot-induced oscillations.

Activity Tracking
Activity tracking differs from the detection and

analysis of deviations. The activity tracking
methodology involves first predicting the set of
expected nominal operator activities for the current
operational context, then comparing actual operator
actions to these expectations to ensure operators
performed correct activities. In some situations,
various methods or techniques may be acceptable;
therefore the methodology also includes a
mechanism for determining that, although operator
actions do not match expectations exactly, the
actions are nonetheless correct.

In this sense, CATS is designed to ‘track’
flight crew activities in real time and ‘understand’
that they are error-free. Such capabilities are
necessary for the development of ‘intelligent’
training systems, which could lessen the need for
pilots to learn important skills ‘on the line.’ They
are also required for ‘intelligent’ aiding systems,
which could provide crews with timely advice and
reminders, and help eliminate tragic pilot-induced
accidents. Finally, these capabilities might enable
airlines to perform offline, crew-centered analyses
of FOQA data in greater detail than is possible with
current GDRASs.

However, in addition to parameters that define
the state of the controlled system (as with FOQA
parameters), activity tracking also requires data
about the dynamic set of constraints on controlled
system behavior, as well as data about actual
operator actions. While constraint data in the form
of data linked clearance information will likely be
widely available in the near future, a number of
legal issues still impede the release of pilot action
data [10]. This paper takes the view that the
promise of significant safety benefits can help
overcome these issues in the future. Activity
tracking also requires a valid model of nominally
correct operator activities suitable for deriving the
set of ‘preferred’ operator actions predicted
(expected according to the nominal model) in the
current operational context. For the flight deck,
such models may be adapted from extant AQP
models and validated in high fidelity simulations.

Crew Activity Tracking System (CATS)
CATS implements a methodology for activity

tracking in a computer-based system that has been
validated to work in real time [14]. Figure 1 depicts
the CATS architecture and processing method
generically. As described above, CATS uses
representations of the current state of the controlled
system and constraints on its operation to derive the
current operational context. CATS then uses this
representation to generate predictions from the
activity model (�). CATS compares detected
operator actions to its predicted activities (❶), and it
assesses actions that it cannot directly interpret
using the predictions by periodically referencing the
activity model until enough new data has arrived to
disambiguate possible interpretations (❷). Thus,
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Figure 1. Generic CATS Architecture And
Processing Method.
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two threads comprise the activity tracking
methodology as implemented in CATS: a
‘prediction thread’ responsible for generating the
context information necessary to predict nominal
activities, and an ‘interpretation thread’ that
interprets operator actions.

Figure 1 differs from previous depictions (e.g.,
[14, 19]) in that it places special emphasis on the
process CATS uses to ‘condition’ actual flight data.
State and constraint data are first filtered for
integrity, i.e., filters process the stream of high-
frequency parameter values that comprise the data
and remove any inconsistencies or invalid values.
This step is not necessary for flight data that have
already been verified. The next step is to create
generic references to specific data values (e.g.,
‘next waypoint,’ as opposed to ‘waypoint ABC’).
These ‘relative’ identifiers are necessary for
constructing a representation of the current
operational context that can be used to reference a
nominal model without loss of specificity.

The next sections describe how an
implementation of CATS for the flight deck works.
The first section presents a simple example
scenario. Subsequent sections detail the knowledge
representations CATS requires, and the process
CATS performs to track some flight deck
automation configuration and usage activities pilots
could perform in this situation.

These sections all assume some knowledge of
commercial aviation and a Boeing 757-style
autoflight system. The basic scheme is that pilots
first program the flight plan into the FMS via the
CDU. After engaging the autopilot and
autothrottles, they interact with aircraft’s Mode
Control Panel (MCP), setting limits/tactical targets
and engaging pitch, roll, and thrust modes as
required to comply with air traffic control
clearances. High-level modes such as Lateral
Navigation (LNAV) and Vertical Navigation
(VNAV) track the FMS-programmed plan; other
modes, such Flight Level Change (FLCH), achieve
a tactical target state (the MCP target altitude, in the
case of FLCH). A detailed description of the
Boeing 757 autoflight system mode usage is
provided in [14]; see [3-5] for discussions of mode
errors and automation issues.

Example Scenario
Figure 2 shows a simple flight scenario. An

aircraft is descending along an FMS-computed
vertical path using a path-following sub-mode of
VNAV, called VNAV PTH. The path includes a
crossing restriction at a waypoint (‘XYZ’). The
aircraft has reached an altitude of approximately
8000 feet when the crew receives the clearance
“expedite descent to 5000 feet; comply with
restrictions.” This clearance indicates that the crew
must now descend to 5000 feet as rapidly as
possible, yet still slow to 200 knots indicated
airspeed at XYZ. The crew must take action, as the
air traffic controller has clearly found the rate of
descent produced by VNAV PTH insufficient for
the current traffic situation.

This scenario, while extremely simple, is an
example of one in which pilots can exhibit
misconceptions about the performance of the
VNAV mode [20]. One action flight crews may
perform is to “extend airbrakes… expecting an
increase in the rate of descent,” when in fact, this
action “results in an increase in thrust to maintain
the selected speed in the presence of additional drag
[20, p. 15]”—an undesirable outcome.

State Space
CATS represents states as hierarchical whole-

part relationships. For example, it represents the
state of the FMS in part as a sequence of waypoints,
each with its attendant latitude, longitude, and
speed and/or altitude restrictions (e.g., ‘210 knots at

XYZ

5000 ft

8000 ft
250 KIAS

200 KIAS
“Expedite descent
to 5000’, comply
with restrictions”

IDLE    LNAV    VNAV PTH

Figure 2. Example Scenario.
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or above 7000 feet’). Figure 3 shows some state
parameters pertinent to the example.

Constraints
Constraints bind the trajectory of the aircraft,

and include Air Traffic Control (ATC) clearances.
Although clearances typically specify states to be
achieved, or trajectories to ‘trace,’ tolerances exist
around the objective state, so that the objectives
specified by clearances actually form part of a so-
called ‘limiting operating envelope.’ For example, a
clearance to ‘expedite descent to 5000 feet’ in fact
places a set of constraints on the next segment of
the flight path. The constraints are those implied by
the greatest rate of descent possible for passenger
comfort, plus the requirement that the aircraft is
within, say, 250 feet of the altitude of 5000 feet
when level flight is reestablished. Like states,
CATS represents constraints as hierarchical whole-
part relationships.

Constraints on the aircraft’s trajectory are an
important addition to the typical FOQA data that
CATS requires. With the advent of data link
technology, such information will increasingly be
available digitally. Future data link message sets
might include specifics about the constraints that a
particular clearance affects, and extant constraints

that a new clearance overrides; these data would

then become part of the complete FOQA data set.
Figure 4 illustrates constraints in effect immediately
after the crew receives the ‘expedite’ clearance.

Context
For purposes of activity tracking, operational

context is an operationally relevant collection of
state parameters and operational constraints in the
current situation, variables derived from these data,
and a collection of relationships between actual
and/or derived states and constraints. CATS
summarizes context knowledge crucial to its
activity tracking application using Boolean-valued
‘context specifiers.’ A context specifier is simply a
clause that describes the current value of a state or
constraint, or the relationship between state(s) and
constraint(s). Thus, because the states and
constraints form hierarchies, the context specifiers
for a particular operational setting also form a
hierarchy. The context specifier ‘FMS-trajectory-
within-limits,’ which specifies that the current
FMS-programmed trajectory matches that which
would be required to use the FMS to meet the
current flight trajectory constraints, subsumes the
context specifier ‘FMS-descent-speed-within-
limits,’ because the descent speed may be
considered part of the FMS trajectory.

Airbrake extension

Altitude

Airspeed

Vertical speed

State
Aircraft

Autoflight System

Autopilot status

Pitch mode

Thrust mode

MCP speed window

Selected MCP speed

Selected MCP altitude

Flight Management System

Descent speed
Trajectory:

XYZ 210/5000,

ABC190/3000, etc.

Figure 3. State Space For The Example
Scenario.

Constraints (‘Limiting
Operating Envelope’)
Terrain/Ceiling

Flight Dynamics

Flight Plan

XYZ 210/5000

ABC 190/3000,
etc.

Clearance

Cleared altitude:  5000

Modifiers:  expedite

Figure 4. Constraints For The Example
Scenario.
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CATS can efficiently summarize the current
operational context by assessing the lowest level
context specifiers, and assigning the parents of
those that evaluate true a value of true as well.
Each low-level context specifier has rules that
express when it is true for the current operating
context, which then determines when its parents are
true. Figure 5 depicts the information CATS uses
to generate context specifiers, and the list of context
specifiers pertinent to the example scenario (note
that some of these context specifiers are mutually
exclusive, and cannot all evaluate true at once).

Some context specifiers present a challenge to
evaluate accurately. For example, the context
specifier ‘time-avail-to-reprogram-FMS’ is
included because it influences a flight crew’s
decision to opt for a lower-level, tactical autoflight
mode instead of continuing in VNAV, for example.
Individual pilots likely evaluate their ‘mental
equivalent’ of such a context specifier differently,
given many additional contextual elements. These
elements include the nature of other activities that
they are currently performing, or need to perform,
and the perceived proficiency of themselves or the
other crew member at making FMS entries. It also

requires accurate predictions about the future state
of the aircraft. The closing discussion addresses
other methods for evaluating context specifiers of
this sort, beyond the simple heuristics employed
currently.

Activity Model
CATS uses a computational model of operator

activities that represents both preferred and correct
alternative methods for accomplishing system
objectives. The CATS model is a normative model
based on the Operator Function Model (OFM) (see
[14, 15]), that allows high-level activities to be
decomposed as necessary to adequately represent
the human-machine interactions of interest, down to
the level of specific operator actions. Each activity
is represented as containing conditions (rules) under
which operators should nominally perform it. The
conditions take the form of AND/OR trees
comprised of context specifiers. Thus, as depicted
in Figure 1, the CATS knowledge representations
effectively apply several layers of rules. This helps
ease the modeling process, because a context
specifier, once defined, serves as a ‘macro’ that
may be used in the conditions for any activity, just
as a derived variable may be used in the rules for
evaluating various context specifiers.

Figure 6 depicts a CATS model fragment that
can be applied to the example scenario; Table 3
provides a list of the conditions for predicting the
numbered activities under nominal conditions. The
activities whose conditions evaluate true given the
current (most recently updated) set of context
specifiers are those that the model nominally
predicts the crew will perform in the current
context. Because the search for predicted activities
proceeds top-down, CATS predicts low-level
activities only if it has already predicted their parent
activities. This means that high-level conditions
need not be repeated in lower-level activities to
predict them (although this practice sometimes aids
clarity). This ‘memoryless’ feature of the model—
that the model can produce the nominal set of
required activities for given a contextual snapshot—
makes it a powerful tool for supporting ‘what-if’
queries. By simply adjusting the context (or further
‘upstream’ states and constraints), an adjusted set of
nominally predicted activities is produced. And
while the model is normative, including accurate
temporal context specifiers potentially makes it

State Constraints (‘Limiting
Operating Envelope’)

Aircraft

Autoflight System

Flight Management
System

Terrain/Ceiling

Flight Dynamics

Flight Plan

Clearance

airbrakes-fully-extended
airbrakes-fully-retracted
alt-above-limits
AP-engaged
descent-rate-above-limits
descent-rate-below-limits
descent-rate-within-limits
expedite-required
FLCH-engaged
FMS-des-spd-within-limits
FMS-traj-within-limits

IDLE-thrust
MCP-alt-within-limits
MCP-spd-window-open
MCP-spd-within-limits
speed-above-FMS-des-spd
speed-below-FMS-des-spd
time-avail-to-reprogram-FMS
tracking-FMS-des-spd
VNAV-engaged
VNAV-PTH-engaged

Current Context

Figure 5. Context Generation, And ‘Context
Specifiers’ Pertinent To The Example

Scenario.

Rules
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more responsive to contextual subtleties (cf. [21]).
The model also usually includes information about
which pilot should nominally perform an activity
(unless a separate model is used to track each
pilot’s activities).

Specifically, the model fragment in Figure 6
represents the activities of setting target speeds and
altitudes using the MCP, reprogramming the FMS
to reflect the current flight plan constraints,
engaging one of three possible, mutually exclusive
vertical modes (VNAV, FLCH, and Vertical Speed

Use FL CH (8)

Descend to altitude (5) Use V/S

Use VNAV (7)

Reconfigure  FMS
Descent Trajectory (4)

Engage VNAV (11)

Monitor VNAV (12)

Engage FL CH (13)

Monitor FL CH (14)

Extend airbrakes (20)

Retract airbrakes (21)

Enter  MCP speed (10)

Perform Autopilot descent (1)
Push FL CH switch (19)

Push VNAV  switch (18)

Program descent speed (6)

Set tactical speed target (3)

Enter MCP altitude (9)Set alert/limit altitude (2)

Dial MCP speed (17)

Dial MCP altitude (16)

Adjust airbrakes (15)

Figure 6. CATS Model Fragment For The Example Scenario.

Table 3. Conditions For Nominally Predicting Activities In The Model Fragment Shown In Figure 6.
(1) (AND AP-engaged alt-above-limits)
(2) (NOT MCP-alt-within-limits)
(3) (AND MCP-spd-window-open (NOT MCP-spd-within-limits))
(4) (AND (NOT FMS-traj-within-limits) time-avail-to-reprogram-FMS)
(5) alt-above-limits
(6) (NOT FMS-des-spd-within-limits)
(7) (AND (NOT expedite-required) (OR FMS-traj-within-limits time-avail-to-reprogram-FMS))
(8) (OR expedite-required (AND (NOT FMS-traj-within-limits (NOT time-avail-to-reprogram-FMS)))
(9) (NOT MCP-alt-within-limits)
(10) (NOT MCP-spd-within-limits)
(11) (AND (NOT VNAV-engaged) MCP-alt-within-limits)
(12) VNAV-engaged
(13) (AND (NOT FLCH-engaged) MCP-alt-within-limits)
(14) FLCH-engaged
(15) (OR (AND (NOT descent-rate-within-limits) (NOT VNAV-PTH-engaged)) (AND (NOT tracking-FMS-des-spd)

VNAV-PTH-engaged))
(16) (NOT MCP-alt-within-limits)
(17) (NOT MCP-spd-within-limits)
(18) (NOT VNAV-engaged)
(19) (NOT FLCH-engaged)
(20) (AND (NOT airbrakes-fully-extended) (OR (AND IDLE-thrust VNAV-PTH-engaged speed-above-FMS-des-spd)

(AND (NOT VNAV-PTH-engaged) descent-rate-below-limits)))
(21) (AND (NOT airbrakes-fully-retracted) (OR (AND IDLE-thrust VNAV-PTH-engaged speed-below-FMS-des-spd)

(AND (NOT VNAV-PTH-engaged) descent-rate-above-limits)))
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(V/S)), and adjusting the airbrakes. For the example
scenario depicted Figure 2, and the accompanying
CATS knowledge representations, the model would
predict that the pilot responsible for making
automation inputs should push the MCP FLCH
switch (as the required altitude 5000 feet is
presumably already set). As FLCH engages, and the
requested rapid descent commences, the set of
context specifiers will reflect this change, and
predict that the pilot should monitor the FLCH
descent. The next section focuses on what happens
in the example when the crew performs other
activities instead.

Action Interpretation
As shown in Figure 1, two threads comprise

activity tracking.  First, the prediction thread
predicts activities an operator is likely to perform
given the current operational context, as described
in the previous section.  Then, after the operator
actually performs some action, the interpretation
thread processes the action to determine whether it
supports predicted activities, or some acceptable
alternative. An operator error may be signaled if an
action does not support any acceptable methods for
meeting current operational constraints, or if no
action occurs to support a needed activity within
some specified interval. If CATS cannot interpret
an action immediately, it will try again periodically
as it receives new data.

The example scenario is marked by the
possibility that flight crews will attempt to increase
the rate of descent using the airbrakes, when in fact
this action only slows the aircraft along the path,
and causes the throttles to advance, if necessary.
Because the airbrake extension action does not
support any activities that CATS initially predicts
according to the model, the interpretation thread
must determine if the action is viable for any other
reason in the current context. In the example, the
interpretation thread checks conditions for using the
airbrakes, and finds no correspondence with the
current context, signaling a possible error.

Suppose, on the other hand the flight crew opts
to engage V/S mode (required actions and
conditions omitted from Figure 6 and Table 3). As
long as the crew sets an adequate descent rate in the
MCP vertical speed window, this course of action is
acceptable—although using FL CH is preferred
according to the model. Thus, CATS can be used to

capture the context when crews choose non-
preferred actions, so safety managers can assess
action preferences under specific conditions in
detail.

Applications
Analysis
While CATS was not initially developed as an

analysis tool, in a research environment, this
application has proven the most beneficial. New
flight deck procedures designed for use with new
operational concepts have been analyzed using
CATS with high-fidelity full-mission simulation
data [19, 22, and 23]. For these applications, CATS
has been augmented with visualization interfaces
designed to provide insights into crew performance,
much like FOQA GDRASs.

In particular, CATS has proven useful for
analyzing crew performance in the NASA Ames
Advanced Concepts Flight Simulator (ACFS), a
full-motion, visual-equipped flight simulator. The
ACFS sends CATS detailed data in real time, so
CATS can track crew activities as they are
performed. When CATS detects that a crew is
experiencing difficulties implementing a new
procedure, it can also help determine why. Because
predictions are made as soon as the operational
context allows the activities to be performed,
activity latencies can be determined by comparing
the time when the actual activities are performed
against the time when they are predicted. Activities
that are not performed soon after the predicted time
may be inadequately cued. Other activities may
confound performance, suggesting conflicting task
and resource demands. Its accompanying
visualization interfaces and data-replay capabilities
make CATS a useful tool for debriefing subject
pilots.

Training/Aiding
CATS also supports the applications that

motivated it originally, acting as the source of
knowledge for context-sensitive training systems
and operator aids [24]. With its model of operator
activities, CATS can provide instructions to the
operator phrased from the viewpoint of the
operator. The prototype aiding system described in
[24] suggests that this a powerful advantage; a few
simple lines of text are all that is required to cue the
flight crew to the next required activity, and support
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queries about why and how the crew should
perform the activity. At the research level, this
scheme is useful for eliciting feedback from
operators about how the underlying model and sets
of rules for encapsulating context information
should be structured.

Discussion
This paper has focused on the potential for

using CATS as a FOQA analysis tool, and provided
an example of how CATS works to uncover subtle,
yet important, distinctions between different
methods of operation in a particular context using a
model of nominal activities. While GDRASs that
detect deviations could doubtless also be tailored to
detect the ‘incorrect use of airbrakes’ issue
discussed above, given information about the
‘expedite’ clearance, a CATS-based tool could
potentially reveal such issues, without knowing
beforehand that they exist. Thus, CATS can help
shed light on low-level operational issues, and
directly support knowledge transfer to practitioners
via training/aiding applications. Moreover, it seems
likely that data and errors that CATS detects can
also help support fine-grained cognitive engineering
analyses and human performance modeling
research. The next sections describe issues
surrounding a forthcoming attempt to demonstrate
CATS using flight data from the NASA Langley
B757 ARIES aircraft.

Flight Data Scope
The scope of flight data available will limit the

initial test of the CATS with the B757 ARIES
aircraft. An observer will record and encode
clearances, as they will not be available digitally.
The aircraft state parameters to be used in the test
are also limited to a fraction of those used in
previous simulator applications (e.g., the ACFS
[23]). The data exclude interactions with the
FMS—a conspicuous omission, given the
increasing role of FMS-based operations in future
operational concepts, and the success of CATS in
tracking such activities in past demonstrations [19,
22-24]. Nonetheless, the available data are
sufficient to examine pilot mode selections and
target value settings on the MCP, such as the
VNAV PTH-airbrake example described above.

Reasoning under Uncertainty
Great care must be taken to overcome

‘brittleness’ in a ‘pure’ rule-based framework; the
above model fragment addresses, in the way it is
structured, issues discussed in [14] and [15] to the
extent possible. However, to address missing data
and difficult-to-formulate rules for specifying
context, the B757 ARIES CATS implementation
will depart from the strict rule-based OFM-style
modeling formulation described above.
Uncertainties will instead be managed using
Bayesian Network (BN)-based methods for
reasoning under uncertainty. A vast body of
literature espouses the value of these methods (e.g.,
[25-31]), and preliminary research with CATS
indicates BN formulations can be processed in real-
time as required for training/aiding applications.

The multiple layers of rules present in CATS
lend themselves well to a hybrid approach, as rules
can be thought of as BNs containing prior and
conditional probabilities with only zero and one
values. Thus, one possible approach is to maintain
the structure of the CATS model and replace rules
for generating context specifiers with BNs. Any
rule whose performance is limited by uncertain data
can be replaced by a BN designed to assign context
specifiers the value true based on their posterior
probabilities. This allows the CATS interpretation
process to function as described above. A second
approach is to employ BNs to determine when an
activity is nominally predicted.  A third approach is
to structure the entire CATS model as a BN, with
state and action nodes representing evidence
variables linked to chance nodes that represent the
higher-level activities operators are predicted to
perform.

Of these approaches, the first is most
attractive, because pilot training maintains a rule-
based flavor; pilots learn heuristic rules for
selecting and using autoflight modes in specific
contexts, and refining these rules is an important
goal of both training improvement and error-
resilient system design efforts (e.g., [19, 32]). Thus,
maintaining the structure of the CATS model and
using it to support training/aiding while improving
CATS’ capability to assess and summarize the
current context holds promise for a more effective
next-generation activity tracking system.



5.C.3-11

Conclusion
Airline FOQA holds great promise for

enhancing safety, by using flight data to improve
feedback for training. Current GDRASs support
detailed analysis of data, but they do not record
pilot action data or, typically, clearance and flight
plan constraints. Activity tracking provides a way to
help disambiguate key contextual information
surrounding deviations or unusual pilot actions. If
CATS has access to data that includes aircraft state,
clearance constraints, and pilot actions, it can
expose contextual nuances in considerable detail.
Any discoveries can be incorporated into training
by connecting a CATS-based training system/aid to
a simulator and allowing pilots to ‘fly’ under
conditions that, barring individual pilot differences,
exactly match the actual context of the event. Such
capabilities can be useful outside the airline arena
(legal issues notwithstanding), as they support both
fine-grained cognitive engineering analyses and
human performance modeling research.
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